Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 18564-18573, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567738

RESUMEN

Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.


Asunto(s)
Técnicas Biosensibles , Grafito , Receptores Odorantes , Odorantes , Grafito/química , Gases , Estereoisomerismo , Receptores Odorantes/química , Péptidos
2.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679409

RESUMEN

Uncoordinated driving behavior is one of the main reasons for bottlenecks on freeways. This paper presents a novel cyber-physical framework for optimal coordination of connected and automated vehicles (CAVs) on multi-lane freeways. We consider that all vehicles are connected to a cloud-based computing framework, where a traffic coordination system optimizes the target trajectories of individual vehicles for smooth and safe lane changing or merging. In the proposed framework, the vehicles are coordinated into groups or platoons, and their trajectories are successively optimized in a receding horizon control (RHC) approach. Optimization of the traffic coordination system aims to provide sufficient gaps when a lane change is necessary while minimizing the speed deviation and acceleration of all vehicles. The coordination information is then provided to individual vehicles equipped with local controllers, and each vehicle decides its control acceleration to follow the target trajectories while ensuring a safe distance. Our proposed method guarantees fast optimization and can be used in real-time. The proposed coordination system was evaluated using microscopic traffic simulations and benchmarked with the traditional driving (human-based) system. The results show significant improvement in fuel economy, average velocity, and travel time for various traffic volumes.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Vehículos Autónomos , Aceleración , Viaje
3.
J Vis Exp ; (144)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30855575

RESUMEN

In this study, we fabricated a flexible 3D mesh structure with periodic voids by using a 3D lithography method and applying it to a vibration energy harvester to lower resonance frequency and increase output power. The fabrication process is mainly divided into two parts: three-dimensional photolithography for processing a 3D mesh structure, and a bonding process of piezoelectric films and the mesh structure. With the fabricated flexible mesh structure, we achieved the reduction of resonance frequency and improvement of output power, simultaneously. From the results of the vibration tests, the meshed-core-type vibration energy harvester (VEH) exhibited 42.6% higher output voltage than the solid-core-type VEH. In addition, the meshed-core-type VEH yielded 18.7 Hz of resonance frequency, 15.8% lower than the solid-core-type VEH, and 24.6 µW of output power, 68.5% higher than the solid-core-type VEH. The advantage of the proposed method is that a complex and flexible structure with voids in three dimensions can be relatively easily fabricated in a short time by the inclined exposure method. As it is possible to lower the resonance frequency of the VEH by the mesh structure, use in low-frequency applications, such as wearable devices and house appliances, can be expected in the future.


Asunto(s)
Polímeros/química , Vibración , Electricidad , Fenómenos Mecánicos , Impresión
4.
Micromachines (Basel) ; 11(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906208

RESUMEN

A cell culture on a scaffold has the advantages of functionality and easy handling, because the geometry of the cellular tissue is controlled by designing the scaffold. To create complex cellular tissue, scaffolds should be complex two-dimensional (2D) and three-dimensional (3D) structures. However, it is difficult to fabricate a scaffold with a 2D and 3D structure because the shape, size, and fabrication processes of a 2D structure in creating a cell layer, and a 3D structure containing cells, are different. In this research, we propose a micropatterning method for porous materials using the difference of the glass transition temperature between exposed and unexposed areas of a thick-photoresist. Since the proposed method does not require a vacuum, high temperature, or high voltage, it can be used for fabricating various structures with a wide range of scales, regardless of the materials used. Additionally, the patterning area can be fabricated accurately by photolithography. To evaluate the proposed method, a membrane integrated scaffold (MIS) with a 2D porous membrane and 3D porous material was fabricated. The MIS had a porous membrane with a pore size of 4 µm or less, which was impermeable to cells, and a porous material which was capable of containing cells. By seeding HUVECs and HeLa cells on each side of the MIS, the cellular tissue was formed with the designed geometry.

5.
Micromachines (Basel) ; 9(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572685

RESUMEN

Culturing cellular tissues inside a microchannel using an artificial three-dimensional (3D) microstructure is normally conducted to elucidate and reproduce a biological function. The thick photoresist SU-8, which has a microscale resolution and high aspect ratio, is widely used for the fabrication of microchannels and scaffolds having 3D structures for cell culture. However, it is difficult to accurately fabricate a mesh structure with a pore size that is smaller than the cells that has an overall height greater than 50 µm because of the deterioration of the verticality of exposure light and the diffusion of acid, which accelerates the crosslinking reaction in the SU-8 layer. In this study, we propose a method of integrating a vertical porous membrane into a microchannel. The resolution of the vertical porous membrane becomes more accurate through inclined oxygen ashing, without degrading the robustness. Because a single mask pattern is required for the proposed method, assembly error is not generated using the assembly-free process. The fabricated vertical porous membrane in the microchannel contained micropores that were smaller than the cells and sufficiently robust for a microfluidic system. HepG2 cells were attached three-dimensionally on the fabricated vertical porous membrane to demonstrate 3D cell culture.

6.
Sci Technol Adv Mater ; 19(1): 660-668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275914

RESUMEN

This paper proposes a bimorph piezoelectric vibration energy harvester (PVEH) with a flexible 3D meshed-core elastic layer for improving the output power while lowering the resonance frequency. Owing to the high void ratio of the 3D meshed-core structure, the bending stiffness of the cantilever can be lowered. Thus, the deflection of the harvester and the strain in the piezoelectric layer increase. According to vibration tests, the resonance frequency is 15.8% lower and the output power is 68% higher than in the conventional solid-core PVEH. Compared to the solid-core PVEH, the proposed meshed-core PVEH (10 mm × 20 mm × 280 µm) has 1.3 times larger tip deflection and the maximum output power is 24.6 µW under resonance condition at 18.7 Hz and 0.2G acceleration. Hence it can be used as a power supply for low-power-consumption sensor nodes in wireless sensor networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...